Variance Decomposition Networks: Potential Pitfalls and a Simple Solution

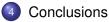
Jorge A. Chan-Lau

jchanlau@imf.org

Institute for Capacity and Development, International Monetary Fund, and Credit Research Initiative, National University of Singapore

> Second Conference on Network Models and Stress Testing for Financial Stability Mexico City, September 26-27, 2017

The views presented herein do not represent those of the IMF, its Executive Board, or IMF policy


Outline

2 Variance Decomposition Networks

A Case Study 3

э

Outline

- Variance Decomposition Networks
- 3 A Case Study
- 4 Conclusions

э

イロト イヨト イヨト イヨト

Systemic Risk in Financial Networks

- 2008 Crisis highlights systemic risk from interconnectedness
- Financial networks
 - Transmits shocks
 - Amplifies shocks
- Network analysis guiding financial sector policy
 - FSB Systemically Important Financial Institution designation
 - IMF Mandatory Financial Sector Assessment Program
 - Contagion and spillover analysis
 - Central banks, i.e. Banco de Mexico
 - IMF-World Bank FSAPs

(日)

Some related work

- Direct exposures
 - Eisenberg and Noe (2001)
 - Upper (2011)
 - Jo (2012)
- Systemic risk rankings
 - Battiston et al (2012)
 - D'Errico, Battiston and Gurciullo (2016)
- Agent-based model
 - Montagna and Kok (2013)
 - Bookstaber and Maddrik (2015)
 - Chan-Lau (2015)
- Market-based
 - Billio et al (2012)
 - Kennet et al (2010)
 - Chan-Lau, Chuang, Duan and Sun (2016)

Outline

Variance Decomposition Networks

- Diebold-Yilmaz Networks
- Lanne-Nyberg Decomposition
- Systemic Risk Measures

3 A Case Study

4 Conclusions

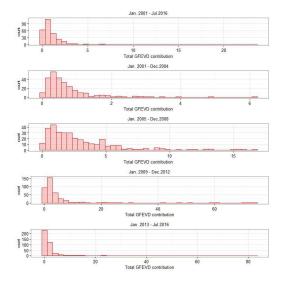
A

4 3 > 4 3

Diebold-Yilmaz Basics

Start selecting number of firms

- Estimate unrestricted VAR model
 - Equity returns
 - Observable market-based measures
- Network construction
 - Each firm is a node
 - Edges
 - Directional, i.e. from i to j
 - Contribution of i to variance decomposition of j


A D A D A D A

Selection of Variance Decomposition Method

Generalized Forecast Error Variance Decomposition (GFEVD)

- Introduced by Pesaran and Shin (1998)
- VAR ordering does not matter (Koop, Pesaran, and Potter, 1996)
- FEVD from structural VAR adds to unity ...
- ... bug GFEVD does not!

(日)

æ

ヘロト 人間 とくほとくほど

Patching up the GFEVD

Start with MA representation of VAR

$$Y_t = \sum_{j=0}^{\infty} A_j \epsilon_{t-j}$$

• Pesaran-Shin GFEVD, horizon h

$$\theta_{ij}(h) = \frac{\sigma_{ii}^{-1} \sum_{k=0}^{h} (\boldsymbol{e}_j^{\prime} \boldsymbol{A}_k \boldsymbol{e}_j)^2}{\sum_{k=0}^{h} \boldsymbol{e}_j^{\prime} \boldsymbol{A}_k \boldsymbol{\Sigma} \boldsymbol{A}_k^{\prime} \boldsymbol{e}_i}$$

Diebold-Yilmaz normalization

$$\hat{\theta}_{ij}(h) = rac{ heta_{ij}(h)}{\sum_{k=1}^{n} heta_{ik}(h)}$$

• Higher $\sum_{j=1,..,n} \hat{\theta}_{ij}$ implies higher systemic risk ranking

Pitfalls in interpreting DY GFEVD

- Economic interpretation of shocks (Koop et al, 1996)
- Good for systemic risk ranking snapshot in any given period ...
- ... but inconsistent to assess systemic risk contributions over time

(日)

A Simple Example

- Period 1
 - Firm A explains 20 percent of GFEVD of firm B
 - Total GFEVD of firm B equals to 2
- Period 2
 - Firm A explains 50 percent of GFEVD of firm B
 - Total GFEVD of firm B equals to 0.5
- Has Firm A become more systemic to Firm B?
- Ambiguous answer
 - Yes (DY normalization), up 50 percent from 20 percent
 - No, 50 percent of 0.5 is less than 20 percent of 2

Patching Up the Diebold-Yilmaz Network

- Diebold-Yilmaz network provide the right intuition but ...
- ... variance decomposition method leads to ambiguous result
- Ambiguity invalidates systemic risk ranking dynamics
- How can we correct it?
- Use Lanne-Nyberg variance decomposition

(日)

Lanne-Nyberg Variance Decomposition

Starts with Generalized Impulse Response Function (GIRF)

$$GI(h, \delta_t, \Omega_{t-1}) = A_h \Sigma e_j \sigma_{jj}^{-1} \delta_j$$

• Lanne-Nyberg GFEVD $\lambda_{ij}(h)$

$$\lambda_{ij}(h) = \frac{\sum_{k=0}^{h} GI(h, \delta_t, \Omega_{t-1})}{\sum_{j=1}^{n} \sum_{k=0}^{h} GI(h, \delta_t, \Omega_{t-1})}$$

Chan-Lau (IMF and NUS)

Systemic Risk Measures

Directional connectedness from firm j to firm i

$$\mathcal{C}_{ij}(h) = \left\{egin{array}{c} \hat{ heta}_{ij}(h) & ext{Diebold-Yilmaz} \ \lambda_{ij}(h) & ext{Lanne-Nyberg} \end{array}
ight.$$

• Systemic Risk of a Firm

$$C_{j}(h) = rac{\sum_{i \neq j, i=1}^{n} C_{ij}(h)}{\sum_{i,j=1}^{n} C_{ij}(h)} imes 100$$

• Systemic Vulnerability of a Firm

$$V_{i}(h) = rac{\sum_{i
eq j, i=1}^{n} C_{ij}(h)}{\sum_{i,j=1}^{n} C_{ij}(h)} imes 100$$

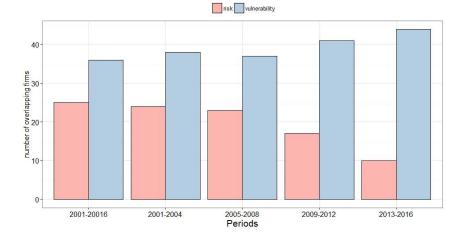
Outline

Variance Decomposition Networks

3 A Case Study

• Systemic Risk in the Global Financial System

4 Conclusions


Case Study: Systemic Risk in Global Financial System

- Weekly equity returns
 - 402 firms
 - 34 advanced and emerging market economies
- Sample dates
 - Full sample: 01/01/2001 07/31/2016
 - Pre-crisis period: 01/01/2001 12/31/2004
 - Lehman Brothers: 01/01/2005 12/31/2008
 - Sovereign debt crisis: 01/01/2009 12/31/2012
 - Secular stagnation: 01/01/2013 07/31/2016
- Lasso Estimation, with 8 lags
- Variance decomposition horizon = 52 weeks
 - Diebold-Yilmaz
 - Lanne-Nyberg

A B F A B F

4 A 1

Number of overlapping firms in the top 50 DY and CLNDY rankings

э

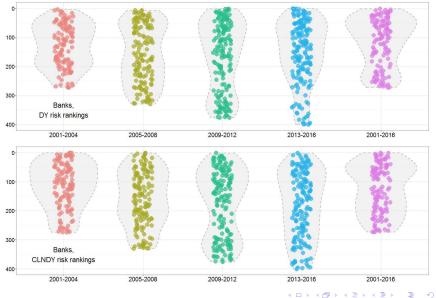
19/28

Rank Correlations - Systemic Risk Rankings

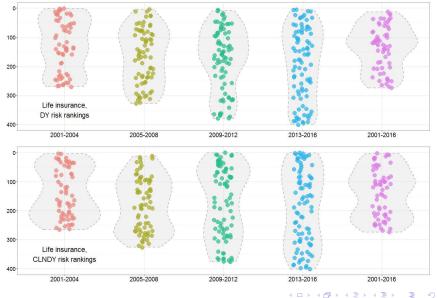
Correlation measure	Spearman			Kendall		
Number of lags in VAR	4	8	12	4	8	12
	Panel A:	Systemic Ris	k Rankings			
		All firms				
Jan. 2001 - Jul. 2016	0.72	0.74	0.74	0.54	0.56	0.56
Jan. 2001 - Dec. 2004	0.68	0.64	0.65	0.50	0.46	0.47
Jan. 2005 - Dec. 2008	0.66	0.69	0.73	0.48	0.52	0.54
Jan. 2009 - Dec. 2012	0.74	0.77	0.73	0.56	0.59	0.54
Jan. 2013 - Jul. 2016	0.54	0.54	0.56	0.38	0.39	0.40
	Top 100 firms	in Diebold-	'ilmaz netwo	rk		
Jan. 2001 - Jul. 2016	0.17	0.32	0.34	0.11	0.22	0.23
Jan. 2001 - Dec. 2004	0.16	0.12	0.15	0.12	0.08	0.11
Jan. 2005 - Dec. 2008	0.17	0.29	0.28	0.12	0.20	0.20
Jan. 2009 - Dec. 2012	0.06	0.05	0.01	0.04	0.04	0.01
Jan. 2013 - Jul. 2016	-0.09	-0.15	-0.23	-0.07	-0.09	-0.16
Top 100 j	firms in corrected	Lanne-Nybe	erg-Diebold-Y	ʻilmaz netwo	rk	
Jan. 2001 - Jul. 2016	0.24	0.42	0.44	0.16	0.29	0.30
Jan. 2001 - Dec. 2004	0.69	0.64	0.63	0.50	0.44	0.44
Jan. 2005 - Dec. 2008	0.39	0.44	0.45	0.28	0.31	0.31
Jan. 2009 - Dec. 2012	0.10	0.22	0.04	0.07	0.15	0.03
Jan. 2013 - Jul. 2016	0.22	0.34	0.32	0.15	0.23	0.21
				• • • •		(三国)
an-Lau (IMF and NUS)	Variance I	Decompositi	on Networks		Mexic	o City 2017

Rank Correlations - Systemic Vulnerability Rankings

	Panel B: Syste	mic Vulner	ability Rankir	ngs		
		All firms				
Jan. 2001 - Jul. 2016	0.80	0.82	0.79	0.63	0.63	0.62
Jan. 2001 - Dec. 2004	0.84	0.80	0.82	0.67	0.62	0.65
Jan. 2005 - Dec. 2008	0.81	0.85	0.84	0.63	0.66	0.66
Jan. 2009 - Dec. 2012	0.81	0.80	0.77	0.63	0.62	0.59
Jan. 2013 - Jul. 2016	0.79	0.76	0.75	0.61	0.59	0.57
	Top 100 firm	s in Diebold-	Yilmaz network			
Jan. 2001 - Jul. 2016	0.62	0.63	0.71	0.47	0.47	0.53
Jan. 2001 - Dec. 2004	0.71	0.73	0.71	0.54	0.55	0.52
Jan. 2005 - Dec. 2008	0.54	0.27	0.15	0.41	0.20	0.11
Jan. 2009 - Dec. 2012	0.61	0.62	0.46	0.46	0.47	0.34
Jan. 2013 - Jul. 2016	0.63	0.60	0.47	0.46	0.44	0.33
Top 100 firn	ns in corrected	Lanne-Nybe	erg-Diebold-Y	íilmaz netwo	rk	
Jan. 2001 - Jul. 2016	0.78	0.77	0.79	0.59	0.58	0.61
Jan. 2001 - Dec. 2004	0.77	0.73	0.65	0.59	0.55	0.49
Jan. 2005 - Dec. 2008	0.55	0.26	0.20	0.39	0.18	0.13
Jan. 2009 - Dec. 2012	0.62	0.51	0.43	0.45	0.36	0.30
Jan. 2013 - Jul. 2016	0.51	0.41	0.38	0.36	0.28	0.25
			·		< ● ● ◆ ●	► Ξ • ৩

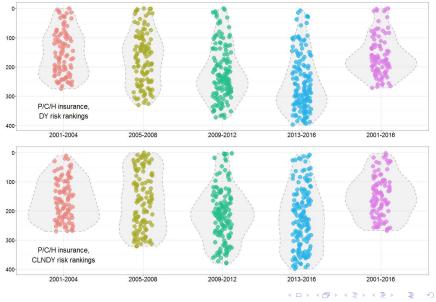

Chan-Lau (IMF and NUS)

Rank Correlations - Systemic Vulnerability Rankings


Table 5. Top fifty systemic firms, by headquarter location (ranking based on a VAR (8) specification)

	Period					
	2001 to 2004	2005 to 2008	2009 - 2012	2013 - 2016	2001 - 2016	
	Pane	el A: Systemic r	isk ranking			
		Diebold -Yiln	naz			
Advanced economies	36	41	50	33	49	
Emerging economies	14	9	0	17	1	
	Corrected	Lanne-Nyberg	-Diebold-Yilma	z		
Advanced economies	50	50	50	48	50	
Emerging economies	0	0	0	2	0	
	Panel B:	Systemic vulne	rability rankin	g		
		Diebold -Yiln	naz			
Advanced economies	38	33	34	33	32	
Emerging economies	12	17	6	7	18	
	Corrected	Lanne-Nyberg	-Diebold-Yilma	Ζ		
Advanced economies	29	29	33	35	32	
Emerging economies	21	21	7	5	18	

Banks: systemic risk rankings, distribution

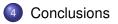

Life insurers: systemic risk rankings, distribution

Chan-Lau (IMF and NUS)

Variance Decomposition Networks

P/C insurers: systemic risk rankings, distribution

Chan-Lau (IMF and NUS)


Variance Decomposition Networks

Outline

2 Variance Decomposition Networks

3 A Case Study

æ

イロト イロト イヨト イヨト

Conclusions

- Variance decomposition networks
 - Complement direct exposure networks
 - Capture direction of spillovers
- Diebold-Yilmaz use Pesaran-Shin GFEVD
 - Do not add up to unity
 - Normalization prevents comparing risk distributions in different points in time
- Use Lanne-Nybert decomposition instead
 - Preserves Diebold-Yilmaz intuition
 - Consistent along time dimension
- Numerical study
 - Choice of decomposition method matters
 - Rank correlations low, especially for risk rankings

A B F A B F

Thank You

Chan-Lau (IMF and NUS)

æ

イロト イロト イヨト イヨト

References

- Battiston,S. et al. 2012. DebtRank: too central to fail? Financial networks, the FED and systemic risk. Scientific Reports 2.
- Billio, M. et al. 2012. Econometric measures of connectedness and systemic risk in the finance and insurance sector. J. of Financial Economics 104.
- Bookstaber, R., Paddrik, M., 2015. An agent-based model for crisis liquidity dynamics. OFR Working Paper 15-18.
- Chan-Lau, J.A. 2015. ABBA: an agent-based model of the banking system. IMF WP.
- Chan-Lau, J.A., Chuang, C., Duan J.C., Sun, W. 2016. Banking network and systemic risk via forward-looking partial default correlation. CRI and IMF.
- D'Errico, Battiston, S., Gurciullo, S. 2016. DebtRank and the network of leverage. J. of Alternative Investments 18.
- Eisenberg, L., Noe, T.H. 2001. Systemic risk in financial systems. *Management Science* 47.
- Jo, J. 2012. Managing systemic risk from the perspective of the financial network under macroeconomic distress. FSI Award 20112 Winning Paper.
- Kenett, D. et al. 2010. Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. *PLoS One* 5.
- Montagna, M., Kok, C. 2013. Multi-layered interbank model for assessing systemic risk. Kiel Working Papers 1873.
- Upper, C. 2011. Simulation methods to assess the danger of contagion in interbank markets. J. of Financial Stability 3.